

# **Virtual Learning**

# **Essential Math 4**

Unit 10 Lesson 6: Solving by Factoring April 30, 2020



# Essential Math 4 Lesson 6: April 30, 2020

Learning Target:
I can solve algebraic equations by factoring.



You will explore the use of area models to factor algebraic expressions and solve for the zeros.

## **Directions:**

- 1. Click through the slides.
- 2. Watch all videos on slides.
- 3. Do what each slide asks on a separate sheet of paper.



## Algebraic Habits of Mind: Seeking and Using Structure

Factoring can help solve equations. If we know  $x^2 - 8x - 33 = 0$  and we factor:  $x^2 - 8x - 33 = (x - 11)(x + 3)$ , we can write (x - 11)(x + 3) = 0 instead. Since either x - 11 = 0 or x + 3 = 0, we know x = 11 and x = -3 are solutions.



Bell Work April 30, 2020

Complete the area model:





Bell Work Key April 30, 2020



$$\frac{x^2 + 12x + 20}{x + 2} = x + 10$$



Practice Problems: Unit 10 Lesson 6 page 30, 9-10 Solve each equation. You will need to factor.

|  | 0 |
|--|---|
|--|---|

| Γ | x2 |   |
|---|----|---|
|   |    | 3 |
|   |    | ) |

$$( ) ( ) = 0$$

$$x =$$
\_\_\_\_ or \_\_\_\_

(10) 
$$w^2 - 11w + 30 = 0$$



$$( ) ( ) = 0$$

$$w =$$
 or \_\_\_\_



(10)

## Answer Key:

Once you have completed the problems, check your answers for page 30 here.

#### Solve each equation. You will need to factor.

(9) 
$$x^2 + 4x + 3 = 0$$
  
 $x - \frac{3}{2}$   
 $x^2 + 4x + 3 = 0$   
 $x - \frac{3}{2}$   
 $x - \frac{3}{2}$   
 $x - \frac{3}{2}$   
 $x - \frac{3}{2}$ 

| Factor Pairs<br>of 3 | Sum |
|----------------------|-----|
| 1, 3                 | 4   |
| -1, -3               | -4  |



| W              | -6                    |
|----------------|-----------------------|
| W <sup>2</sup> | -6W                   |
| -5w            | 30                    |
|                | w <sup>2</sup><br>-5w |

| Factor Pairs<br>of 30 | Sum |
|-----------------------|-----|
| 1, 30                 | 31  |
| -1, -30               | -31 |
| 2, 15                 | 17  |
| -2, -15               | -17 |
| 3, 10                 | 13  |
| -3, -10               | -13 |
| 5, 6                  | 11  |
| -5, -6                | -11 |



Practice Problems: Unit 10 Lesson 6

page 30, 11-12

$$(1) j^2 + 6j - 7 = 0$$

$$-7 = 0$$

$$p^2 + 5p - 24 = 0$$



## Answer Key:

Once you have completed the problems, check your answers for page 30 here.

$$\mathbf{1} \quad j^2 + 6j - 7 = 0$$

| Factor Pairs<br>of -7 | Sum |
|-----------------------|-----|
| 1, -7                 | -6  |
| -1, 7                 | 6   |



$$(j + 7)(j - 1) = 0$$
  
 $j = -7$  or 1

$$(p + 8)(p - 3) = 0$$
  
 $p = -8$  or 3

| Factor Pairs<br>of -24 | Sum |
|------------------------|-----|
| -1, 24                 | 23  |
| 1, -24                 | -23 |
| -2, 12                 | 10  |
| 2, -12                 | -10 |
| -3, 8                  | 5   |
| 3, -8                  | -5  |
| -4, 6                  | 2   |
| 4, -6                  | -2  |



Practice
Problems:
Unit 10
Lesson 6
page 30, 13-14

**(13)** 
$$n^2 + 7n + 10 = 0$$

$$(14) s^2 + 6s + 9 = 0$$

$$s =$$
 or \_\_\_\_



## Answer Key:

Once you have completed the problems, check your answers for page 30 here.

(13) 
$$n^2 + 7n + 10 = 0$$

$$\begin{array}{c|cccc}
 & n & 2 \\
 & n & 2 & 2n \\
 & 5 & 5n & 10
\end{array}$$

| Factor Pairs<br>of 10 | Sum |
|-----------------------|-----|
| 1, 10                 | 11  |
| -1, -10               | -11 |
| 2,5                   | 7   |
| -2, -5                | -7  |

| <b>14)</b> $S^2 + 6$ | 6s + 9 = 0 |    |
|----------------------|------------|----|
|                      | S          | 3  |
| S                    | 52         | 35 |
| 3                    | 35         | 3  |

| Factor Pairs<br>of 9 | Sum |
|----------------------|-----|
| 1, 9                 | 10  |
| -1, -9               | -10 |
| 3, 3                 | 6   |
| -3, -3               | -6  |

$$(n + 2)(n + 5) = 0$$

$$n = -2$$
 or  $-5$ 

$$(s + 3)(s + 3) = 0$$

$$s = -3$$
 or  $-3$ 

Sometimes both solutions can have the same value.



## Just for fun!





## Just for fun! Key





Resources were developed at EDC (Education Development Center, Inc). EDC owns the copyright © 2011-2019



